

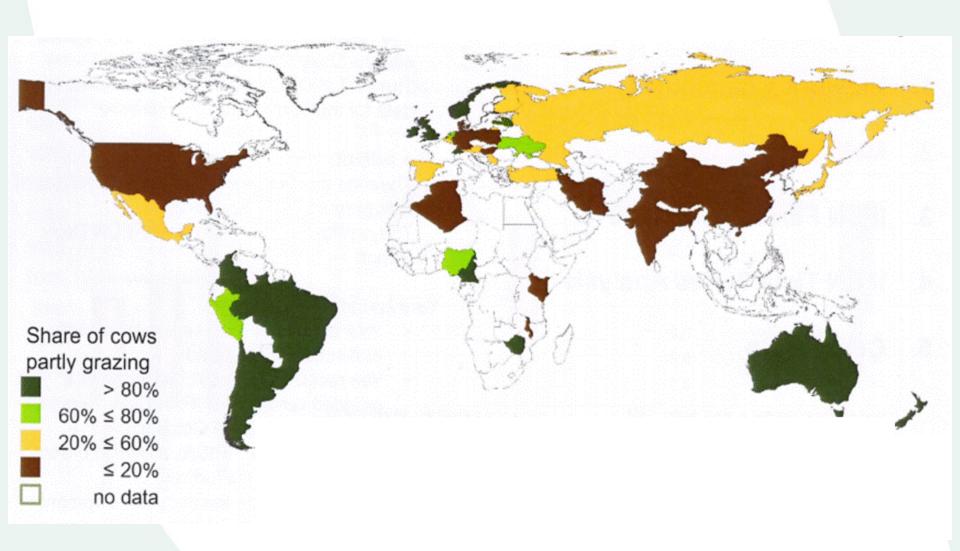
How sustainable are the dairy cattle breeding programs in Brazil?

Marcos Vinicius Silva Senior Scientist, Genomics and Bioinformatics Embrapa Dairy Cattle Turrialba, April 26 2019

Background

Brazil

- The Brazilian dairy industry is based mainly on pastureoriented production systems;
- Dual purpose systems in the tropical part, utilizing B. taurus
 x B. indicus hybrid animals, mostly Holstein/Gir;
- Cows are milked with restricted suckling of calves;
- Average herd size: 80 cows;
- About 18.0 million dairy cows (1,921 farms);


How importante is the dairy sector in Brazil?

- ☐ Milk is produced in every county in Brazil
- □ 4 million jobs (directly and indirectly)
- ☐ Gross sale: US\$ 7.5 billion
- ☐ Turnover: US\$ 18 billion
- □ Around 1 percent of the country's Gross Domestic

Product (GDP)

Pasture based-feeding

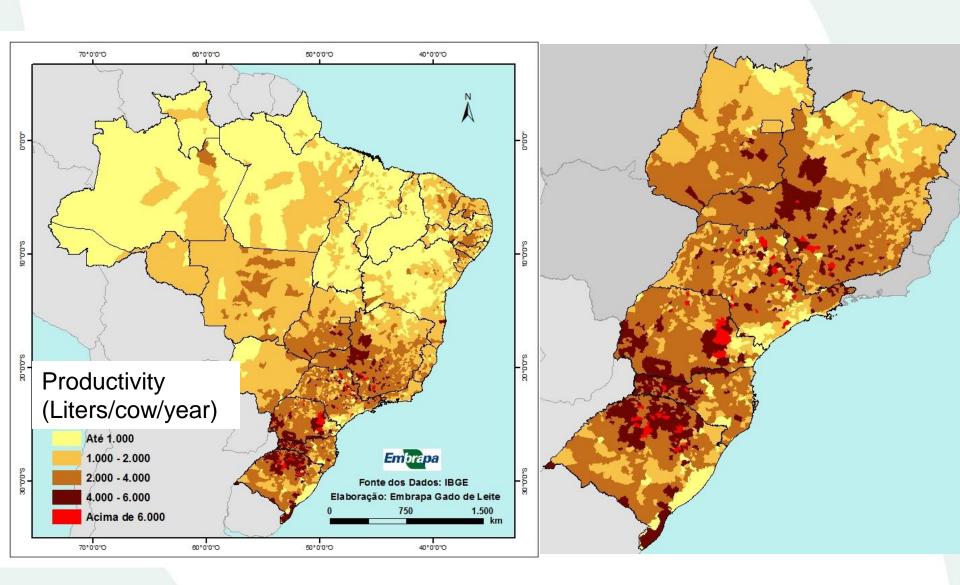
Source: IFCN (2017)

Production Statistics

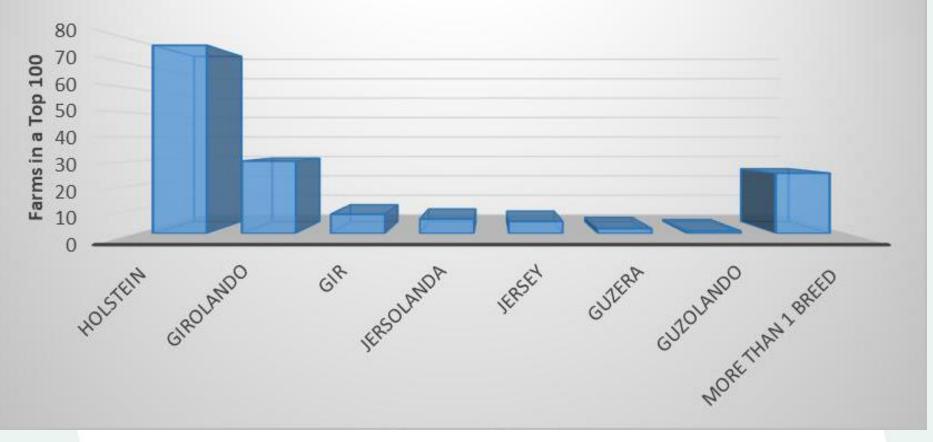
Dairy, Milk, Fluid Brazil	2017 Market Year Begin: Jan 2017		2018 Market Year Begin: Jan 2018		2019 Market Year Begin: Jan 2019		
	USDA Official	New Post	USDA Official	New Post	USDA Official	New Post	
Cows In Milk	17,650	16,262	17,950	16,215		16,300	(1000 HEAD)
Cows Milk Production	23,550	23,624	23,980	22,659		23,150	(1000 MT)
Other Milk Production	3,337	3,142	3,270	3,003		3,060	(1000 MT)
Total Production	26,887	26,766	27,250	25,662	0	26,210	(1000 MT)

Source: USDA (2018)

Milk Production by Region


- The Southeast and South regions of Brazil are the main milk producing areas;
- Minas Gerais state is the largest milk producer (25.6% of the total milk production in 2017);
- Rio Grande do Sul state accounted for 13.2%, and Paraná accounted for 11.7 % in 2017.
- Average milk production in Brazil was 1,695 liters/cow/year in 2017

Source: USDA/IBGE (2018)



Brazil | Productivity of Dairy Cows

Source: IBGE

Types of Dairy Breeds Used in Brazil

- There is an association of the *B. taurus* grade with the input level of the production system;
- -Low-input, smaller farms, use a higher proportion of the more resilient (B.indicus), low *B. taurus* grade cows;
- -Larger farms use more of the higher yielding, higher B. taurus grades

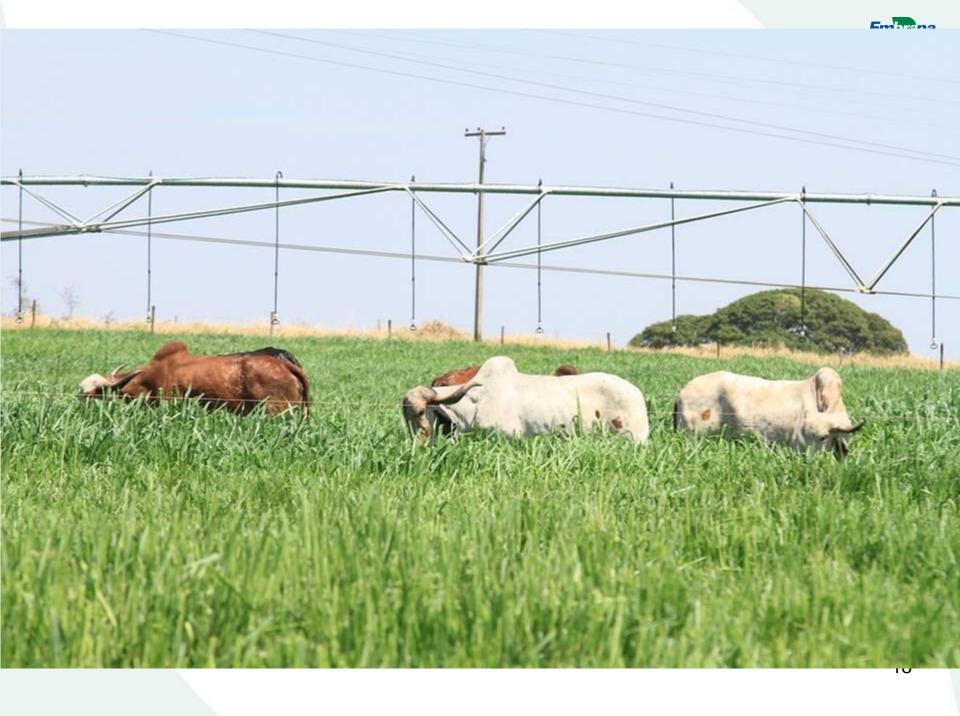
Types of Dairy Breeds Used in Brazil

- There are no cattle census data by breed, so information on this topic comes from specific sample surveys;
- In farms affiliated to the main dairy processor in the State of Minas Gerais showed 89% having B. taurus x B.indicus genetics (Madalena et al., 2012);

- Irrigated intensive rotational grazing;
- Extensive grazing/limited supplementation;
- Semi-confinement;
- Full confinement.

Irrigated intensive rotational grazing - Not commonly used, but is being promoted by a government-supported program for small producers. Promotes irrigated pasture management and good herd management and accurate record-keeping;

Center Pivot Irrigation System





Extensive grazing/limited supplementation

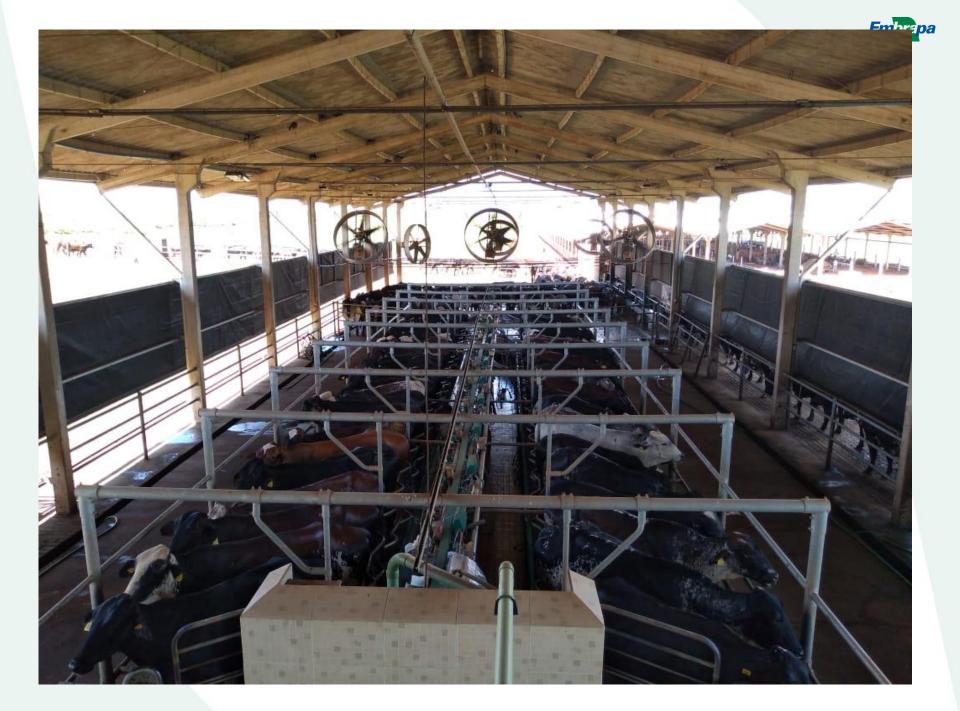
- In this system, the ration consists almost entirely of grazed pasture grass
- Herds are typically in the 30-70 cow size range and consist mostly of cross-bred animals;
- Cows in these herds are usually handmilked in parlors.

Hot and humid climate

Hot and humid climate

Semi-confinement

- Herd size ranges from 70-200 cows and use green-chopped forages (mostly sugar cane), silage, and concentrates yearround to supplement grazed grass;
- Cows are typically 50-50 crossbred and artificial insemination is common.



Production Systems in Brazil

Full confinement

- This system is comparable to parlorfreestall dairy operations in The US;
- Typically, purebred Holsteins are fed conserved forages, and concentrates in freestall barns.

Source: https://sistemafaep.org.br/parana-consolida-seu-lugar-como-segundo-maior-produtor-de-leite-do-brasi

Brazilian Animal Breeding Programs in *Bos indicus* and Girolando

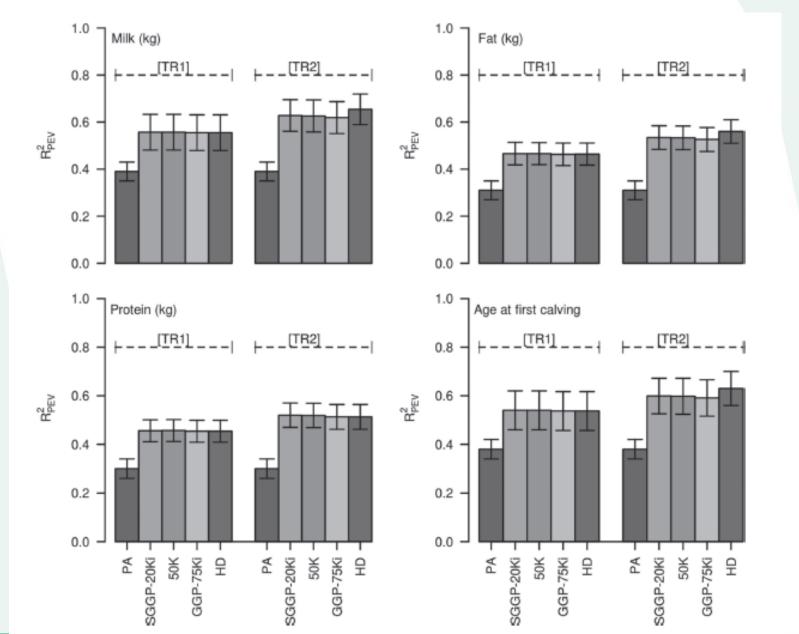
1983:
National Program for Improvement of Dairy Gyr

1994:
National Program for Improvement of Guzera

1997:
National Program for Improvement of Girolando

2010:
National Program for Improvement of Sindhi

Genomic Selection in Brazilian Dairy Cattle


Genomic Selection in Brazilian Dairy Cattle

- √ Grant: US\$ 600,000.00
- √ Genotypes:
 - **Gir:** 620 bulls (HD), 1,676 cows (SNP50K) and 7,370 bulls and cows (Neogen Z-chip 30K)
 - Girolando: 2,000 bulls (HD) and 6,751 cows (Z2L, Z2M, SNP50K and HD)
 - Collaboration with private companies (Zoetis and CRV)

Results – Genomic Selection in Gyr

Average reliability using GBLUP

J. Dairy Sci. 100:1-12

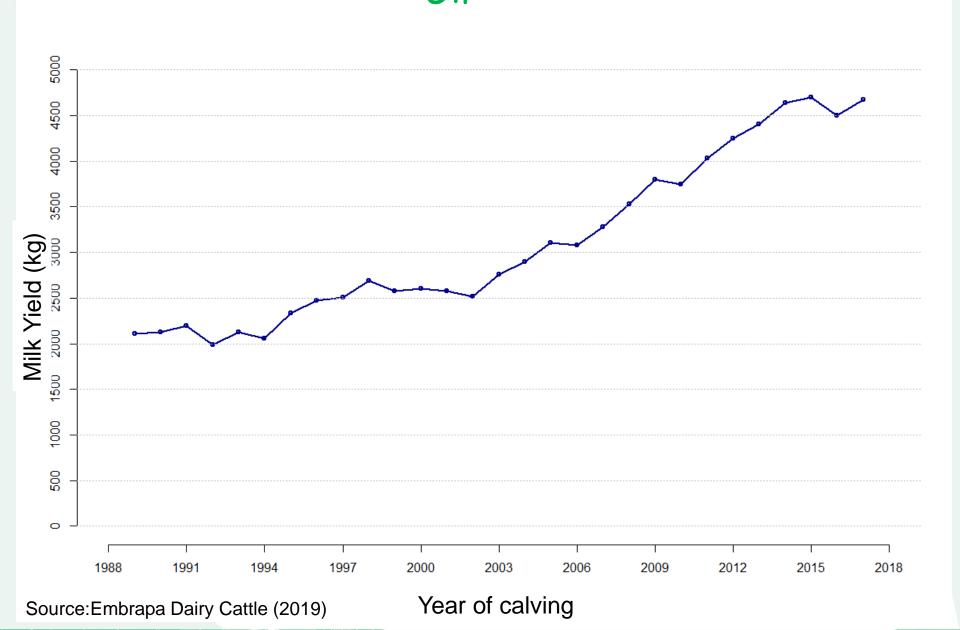
https://doi.org/10.3168/jds.2016-11811

C American Dairy Science Association , 2017.

Accuracy of genomic predictions in Gyr (Bos indicus) dairy cattle

S. A. Boison,* A. T. H. Utsunomiya,† D. J. A. Santos,† H. H. R. Neves,†‡ R. Carvalheiro,† G. Mészáros,* Y. T. Utsunomiya,† A. S. do Carmo,§ R. S. Verneque,§ M. A. Machado,§ J. C. C. Panetto,§ J. F. Garcia,# J. Sölkner,* and M. V. G. B. da Silva§¹

*Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences, 1180, Vienna, Austria †Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (UNESP), Jaboticabal, SP, 14884-900, Brazil ‡GenSys Consultores Associados S/C Ltda, Porto Alegre 90680-000, Brazil

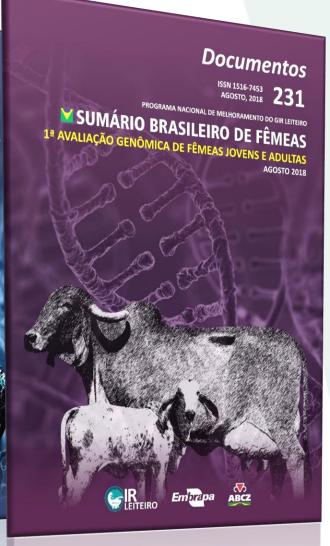

§Empresa Brasileira de Pesquisa Agropecuária, Embrapa Gado de Leite, Juiz de Fora, MG, 360381330, Brazil

#Faculdade de Medicina Veterinária de Araçatuba, Universidade Estadual Paulista (UNESP), Araçatuba, SP, 16015-050, Brazil

Brazilian farmers are already using GS for picking the Gir bulls to progeny testing!

Milk (kg) up to 305 days, per year of calving, in Gir

Milk, fat and protein yield, lactation length, calving interval and age at first calving of Gir breed


Milk Yield (305 days)	4,535 kg
Lactation Length	290 d
Fat Yield (305 days)	139.6 kg
Fat Content	4.24%
Protein Yield:	113.2 kg
Protein Content:	3.46%
Total Solids (305 days):	431.2 kg
Age at First Calving	40 m
Calvina Interval	15 m

Source: Embrapa Dairy Cattle (2018)

Sire and Cow Summaries

SNP Identification (zebu specific)

RESEARCH ARTICLE

Single nucleotide variants and InDels identified from whole-genome re-sequencing of Guzerat, Gyr, Girolando and Holstein cattle breeds

Nedenia Bonvino Stafuzza¹°, Adhemar Zerlotini²°, Francisco Pereira Lobo², Michel Eduardo Beleza Yamagishi², Tatiane Cristina Seleguim Chud¹, Alexandre Rodrigues Caetano³, Danísio Prado Munari¹, Dorian J. Garrick⁴, Marco Antonio Machado⁵, Marta Fonseca Martins⁵, Maria Raquel Carvalho⁶, John Bruce Cole⁷, Marcos Vinicius Gualberto Barbosa da Silva⁵*

1 Departamento de Ciências Exatas, Universidade Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, São Paulo, Brazil, 2 Embrapa Informática Agropecuária, Campinas, São Paulo, Brazil, 3 Embrapa Recursos Genéticos e Biotecnologia, Brasília, Distrito Federal, Brazil, 4 Department of Animal Science, Iowa State University, Ames, Iowa, United States of America, 5 Embrapa Gado de Leite, Juiz de Fora, Minas Gerais, Brazil, 6 Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil, 7 United States Department of Agriculture, Agricultural Research Service, Animal Genomics and Improvement Laboratory, Beltsville, Maryland, United States of

Tropical Dairy Project

Application of Genomic Selection in Girolando Cattle

Girolando Genomic Evaluation - Objectives

- > Develop genomic evaluation for the Girolando breed based on Single Step Approach.
- ➤ Investigate impact of genomic information on breeding value predictions and reliabilities of animals of different breed compositions.
- > Estimate the breed composition using genomics;
- Conduct validation study to show predictive power of genotypes for young animals.

55

RESULTS cows

Results #1 – Young Animals

EBVs and reliabilities from genomic and traditional evaluation

Trait	PA (REL)	gEBV (REL)	Gain
Milk	18%	45%	27%
AFC	18%	46%	28%
CI	8%	22%	14%

Milk yield, lactation length, calving interval and age at first calving of Embrapa Girolando breed

 $4,362 \pm 2,149$

 $4,467 \pm 2,311$

 $4,499 \pm 2,452$

 $4,829 \pm 2,416$

 $4,919 \pm 2,372$

 $5,146 \pm 2,489$

 $5,340 \pm 2,541$

 $5,278 \pm 2,421$

 $5,445 \pm 2,577$

 $4,687 \pm 2,829$

 $4,820 \pm 2,485$

2008

2009

2010

2011

2012

2013

2014

2015

2016¹

Geral

20171, 2

Calving	Milk yield (kg)		Lactation	Calving Interval	Age at First
year	305 days	Total	length (days)	(days)	Calving (days)
2000	3,599 ± 1,989	$3,897 \pm 2,480$	249 ± 111	424 ± 84	993 ± 174
2001	3,497 ± 1,887	$3,721 \pm 2,199$	242 ± 110	427 ± 92	1,024 ± 190
2002	3,429 ± 1,767	$3,640 \pm 2,054$	244 ± 108	421 ± 87	1,027 ± 187
2003	3,510 ± 1,797	$3,747 \pm 2,075$	252 ± 109	428 ± 90	1,017 ± 169
2004	3,619 ± 1,878	$3,872 \pm 2,176$	251 ± 112	434 ± 97	1,050 ± 181
2005	3,582 ± 1,924	$3,854 \pm 2,281$	248 ± 112	444 ± 97	1,102 ± 191
2006	3,768 ± 1,958	$4,084 \pm 2,349$	257 ± 110	443 ± 92	1,100 ± 171
2007	4,110 ± 2,101	4,432 ± 2,520	265 ± 98	450 ± 96	1,129 ± 185

281 ± 102

272 ± 112

259 ± 120

275 ± 126

 280 ± 127

275 ± 120

277 ± 125

281 ± 125

277 ± 121

210 ± 113

267 ± 121

 441 ± 93

426 ± 87

 426 ± 93

 429 ± 97

438 ± 102

442 ± 100

 439 ± 105

440 ± 103

439 ± 105

445 ± 106

437 ± 100

1,138 ± 185

1,110 ± 186

 $1,084 \pm 194$

 $1,045 \pm 207$

 $1,056 \pm 204$

1,056 ± 210

 $1,070 \pm 232$

 $1,055 \pm 232$

 $1,007 \pm 189$

1,052 ± 209

998 ± 191

 $4,814 \pm 2,754$

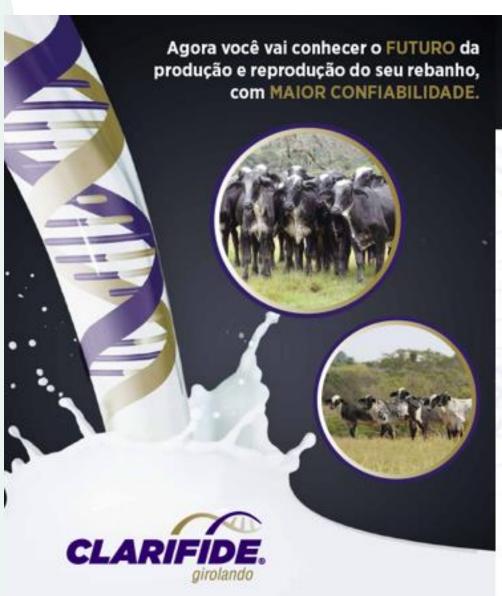
 $4,932 \pm 2,923$

 $4,977 \pm 3,128$

 $5,419 \pm 3,105$

 $5,587 \pm 3,133$

 $5,805 \pm 3,286$


 6.046 ± 3.342

 $6,014 \pm 3,283$

 $6,166 \pm 3,398$

 $4,903 \pm 3,095$

5,378 ± 3,184



Chegou o serviço de avaliação genética mais esperado do mercado.

Ele permite FACILMENTE a seleção dos seus melhores animais, com uma conflabilidade superior aos dos métodos tradicionais baseados somente em fenótipo, pedigree ou ambos.

CONHECA O POTENCIAL GENÉTICO DE SEUS ANIMAIS EM RELAÇÃO À:

dade ao 1º parto:

Intervalo de partos.

ALÉM DE:

- · Paternidade
- · Avô Materso
- · Beta Caseina A2"
- · Beta Lactoglobulina
- · Kappa Caseina I e II

- · BLAD
- DUMPS
- · CVM"
- Brachyspina

* Informação, consectar não citidad de Associação Braditate das Chadonia de Genérala. ** Depositura como tante complemente por uma tima adilibidad.

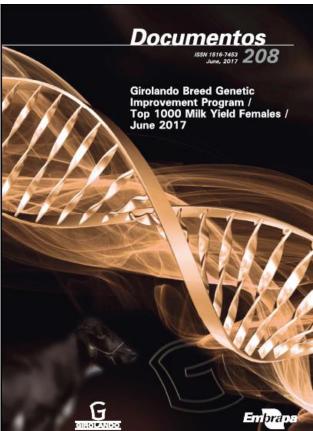
DIVERSAS INFORMAÇÕES apresentadas com ALTA CONFIABILIDADE.

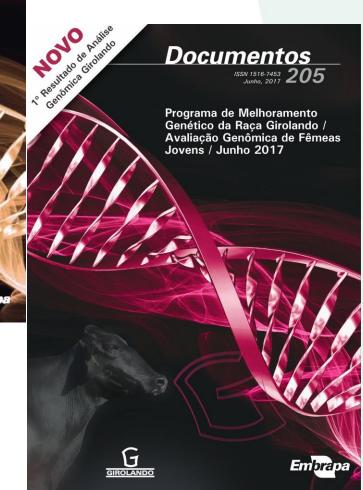
Desenvolvido no Brasil pela equipe de pesquisadores da EMBRAPA Gado de Leite, utilizando informações coletadas pela Associação Brasileira dos Criadores de Girolando e com apoto da Zoetis e CRV Lagoa.

a maneira mais FÁCIL, RÁPIDA e CONFIÁVEL para você selecionar:

- · Doadoras;
- Novilhas de reposição:
- Fémeas para descarte.

Enfim, a ferramenta que faltava para citar a estratégia correta, para aumentar a rentabilidade de sua atividade.





Conclusions

- > Pasture based genetics
- ✓ Viable progeny testing schemes in Brazil for both Girolando and Gir breeds
- ✓ New testing schemes based on genomics
- ✓ Sourcing genetics worldwide to complement Brazilian genetics (Holstein => Girolando)
- ✓ Increasing levels of inbreeding from selection (Gir breed)

Thank you! marcos.vb.silva@embrapa.br

