TROPICAL PASTURES IN A CHANGING ENVIRONMENT. DEVELOPMENT OF AN INTERNATIONAL RESEARCH COLLABORATION IN LATIN AMERICA AND THE CARIBBEAN

Forage conservation strategies in the form of silage and hay for critical periods

Dr.C. Félix Ojeda García

Estación Experimental de Pastos y Forrajes Indio Hatuey Universidad de Matanzas Cuba

Forage conservation strategies in the form of silage and hay for critical periods

- To be consistent with the current realities of livestock, it is necessary to expand these concepts:
- Include protein plants and their conservation in the form of flour.
- Include agro-industrial byproducts and agricultural waste in the concept.
- Validate in this group of foods the technologies developed for forages
- Keep in mind that some of them can also be offered to monogastric species.

The biggest challenge of tropical livestock is to have enough food all year round.

Advances in technologies aimed at optimizing the use of local resources and animal nutrition do not have reciprocity in the application of results and knowledge transfers.

What situations does livestock face?

- Unstable periods of rainfall due to climate change that negatively affect forage availability.
- Diets with nutritional deficit in quantity and quality.
- Does not apply feeding programs that guarantee satisfactory productions.
 Solutions

•Introduce appropriate feeding systems.

• Use surplus pastures and fodder.

•Incorporate crop residues and agro-industrial by-products as food.

• Apply the knowledge and technologies developed.

What decides the technology to use? Animals Category **Time of Number** supplementation **Production** expected

Food Balance

REQUIREMENTS						
Category	Sex	Weight (Kg)	Ingestion capacity (Kg MS)	Weight gain (g/a/d)	CP (g/a/d)	ME (Mcal/a/d)
Fattening	Male	150	4,5	600	492	12,47
Final Fatt.	Male	350	8,6	600	863	17,47
Cows (7L)	Female	400	12,0		1 458	25,80
Ram	Male	30	1,7	100	140	1,82

Needs of food conserved for six months of non-rainy period				
		t/animal		
Category	Silage	Нау	Protein Plants Flour	
Fattening	3	0,5	0,45	
Adult	5	1,0	0,60	
Ram	1	0,2	0,25	
Goat	1,5	0,3	0,35	

Forage Conservation

How to guarantee an adequate quality in the conservation?

Technologies for large farms

Technologies for small farms

Cutting machine

Subproducts

Conservation technologies according to their istics

Dry matter: **15-25 %** Por capas

Absorbent material
Нау
Straw bean
Bagasse of cane
Corn whole plant
10 %
Urea

Lactic Ferments Whey

0			•	
er	Silage	broma	tological cha	racteristic
		Ground and mixed rav	v materials	
m	Direct Presecado	Immature fruits		
83 % I	Foliage Yucca Sweet potato Potato? Malanga? 	Bananas Avocado Cherimoyas Papaya Mango Similar 70 %	Swe M 100 Kg	Yucca eet potato lalanga + 200 L water
10 %	Walanga :	Absorbent material		italia rogati
4 %		Wheat bran, Hay Straw bean Bagasse of cane		
3%		30 %	0	

Subproducts

Hay

Materials \geq 80 % DM

Packing after picking the main crop Large extensions: Specialized machinery Small extensions: Manual o semi-manual

Straws of rice Straw of beans Peanut straw Sesame straw, Whole silver corn

Ammonify?

Conservation technologies according to their bromatological characteristics

Flours

Materials \geq 60 \leq 80 DM

Blade mill

Dehydrate

To the sun

In the shade in roofed installations Solar dryers

Non-commercial waste of: Yuca, Sweet potato, Malanga, Green banana, Shellfish shells, Fish, Wastes from the silkworm breeding

Use of silages

They can not be the only food

They need to be supplemented with energy and protein

To overcome these difficulties:

- **1.** Carry out restricted pastures (4-6 hours)
- 2. Supplement with hay (10% of total consumption)
- 3. Concentrate (1-2 kg / anima / day)
- 4. Provide fodder (30% of total consumption)

Supplementation technology according to the pastel procedure

Place a layer of hay equivalent to 0.5 kg / animal in the feeder

Place fresh or silage fruit skins 4 or 5 kg / animal

Sprinkle diluted urea, according to food balance

Incorporate the protein supplement according to the food balance

Add mineral salts, to regulate the speed of consumption

Hay

Packaging for small producers

Mowing with machetes, scythes or similar. Preparation of the bales :

- Wooden or plastic box of 100x50x40 cm.
- Place two long strings on the bottom that fall on both sides.
- Deposit a layer of hay and compress with your feet.
- Introduce successive layers until filling the box.
- With the people over to love the bale.

Another procedure :

- Divide a 200 L tank into two halves and join it with sliding hinges.
- Place two strings from the bottom that protrude the edges.
- Introduce successive layers of hay and compact with the feet.
- Fill the tank to the edge and tie the ropes.

Place the bale in a covered, ventilated and dry place. Avoid storing for more than 6 months.

Protein plant meal

Leucaena leucocephala

Gliricidia sepium

Morus alba

Albizia lebbeck

Protein plant meal

- Perennial plants with high levels of crude protein in their foliage.
- Their nutritional characteristics allow them to be included in unconventional concentrates.

Contribution of nutrients of one ton of flour from tree plants and a cereal concentrate.

Nutrient yield for 1 t of tree meal				
Tree species	DM (t)	CP (t)	FB (t)	EM (10 ³ Mcal)
Leucaena leucocephala	0,90	0,18	0,17	1,93
Gliricidia sepium	0,98	0,24	0,28	2,17
Albizia lebbeck	0,96	0,23	0,26	2,05
Morus alba	0,97	0,24	0,13	2,36
Concentrado comercial	0,86	0,16	0,05	2,39

Milk Cows and Bulls Ceba

	Non-convencional Concentrate		
Raw materials	Moringa + Morera + Tithonia (%)		
Moringa	37,00		
Morera	25,00		
Tithonia	36,00		
Pre-mezcla mineral	2,00		
Bromatological analyzes			
Total protein (%)	23,20		
Crude fat (%)	6,19		
Metabolizable Energy (Mcal/Kg MS)	3,16		
Crude fiber(%)	10,47		
Calcium (%)	1,74		
Phosphorus (%)	0,44		

Example of diets

Feeding bulls Effect of protein supplementation on weight gain in silage diets.

Food	Suplementation		
(kg/a/día)	With	Without	
Forage	14,90 ± 0,6	16,00 ± 0,4	
Silage	10,20 ± 0,7	12,50 ± 0,2	
Salt	0,04	0,04	
Нау	$1,00 \pm 0,1$	0,50 ± 0,1	
Urea	0,08	0,02	
Distillery grains		0,50	
Wheat bran		1,00	

Feeding bulls Comparison of weight gains by using fresh citrus skins or silage.

Food (kg/a/día)	Silage	Hollejo
Forage	14,80 ± 0,5	16,20 ± 0,4
Hollejo		20,30 ± 0,5
Silage	9,90 ± 0,4	
Salt	0,05	0,05
Нау	0,50 ± 0,1	0,50 ± 0,1
Urea	0,02	0,05
Distillery grains	1,50	1,50

Feeding bulls Effect of supplying fresh or ensiled citrus husk by the cake process.

Food (kg/a/día)	Silage	Hollejo
Forage	11,80 ± 0,6	13,90 ± 0,8
Hollejo		16,01 ± 0,4
Silage	10,20 ± 0,5	
Salt	0,05	0,05
Нау	0,50 ± 0,1	0,50 ± 0,1
Urea	0,05	0,07
Norgol	0,80	0,80
Wheat bran	1,10	1,10

Use of fresh or silage citrus skins using the cake for protein supplementation.

Fred	Silage	Hollejo	
Food	kg/a/día		
Forage	11,80 ± 0,6	13,90 ± 0,8	
Hollejo		16,01 ± 0,4	
Silage	10,20 ± 0,5		
Sat	0,05	0,05	
Нау	0,50 ± 0,1	0,50 ± 0,1	
Urea	0,05	0,07	
Grains of distillery	0,80	0,80	
Wheat bran	1,10	1,10	

What to do?

- Create multisectoral groups able to develop strategies of feeding in the farms.
- Train producers in the preparation of feed and nutritional balances, instant and perspective, by animal category and time of year.
- To determine the needs of forage resources to cover deficits through immediate, medium and long-term solutions.
- Evaluate unconventional food sources in the environment and their utilization potentials.
- Contribute through the incorporation as food of agricultural wastes and byproducts, to environmental decontamination.
- Train the producers in the technologies of conservation and use according to their nutritional requirements and economic possibilities.
- Have budgets to implement food and conservation systems.

FINAL CONSIDERATIONS

Using the food resources offered by the tropics and the surrounding livestock areas is a necessity and a challenge. Both actions complement each other and it is up to us to couple them.

MUCHAS GRACIAS fojeda@ihatuey.cu

and the second

5/10/09

UREA 3 15