

INNOVATIONS FOR SUSTAINABLE INTENSIFICATION OF PASTURE-BASED LIVESTOCK SYSTEMS IN THE TROPICS

Danilo A. Pezo

Workshop: "Tropical pastures in a changing environment: development of an international research collaboration in Latin America and the Caribbean"

CATIE, Turrialba, Costa Rica 24 – 26 de abril del 2019 The sustainable intensification of forage-based livestock systems should be aimed at:

Enhancing livestock productivity, with minimum impacts on biodiversity

□ Increasing resilience to CC

□ Reducing GHG emissions

Improving net family income of livestock families

Improving nutrition and health of the whole population.

THE LIVESTOCK REVOLUTION

(Delgado et al, 1999)

The demand for animal protein sources in low income countries is increasing due to:

- Population growth
- Improve in income
- Movement of people from rural to urban areas

PROJECTED DEMAND OF ANIMAL PROTEINS BY 2030 IN DIFFERENT REGIONS OF THE WORLD (ILRI/WEF, 2019)

PER CAPITA CONSUMPTION OF ANIMAL PROTEINS BY REGIONS IN 2013 (ILRI/WEF, 2019)

ENVIRONMENTAL IMPACTS OF TRADITIONAL LIVESTOCK Systems in LAC

- > Deforestation
- Pasture Degradation
- Soil and water resources degradation
- Biodiversity losses
- > Higher GHG emissions

Deforestation in LAC

2015

PASTURE DEGRADATION IN LAC

50 - 80% of grazing are degraded (in Central America ca. 7 million ha)

- The problem increases with time, because the rate of degradation (12%) is greater than rehabilitation (5%).
- Under current pasture management practices is accepted that pastures las no more than 5-7 years.
- Pasture degradation is one of the main causes of expansion of the agricultural frontier in livestock dominated landscapes.

IMPACTS OF PASTURE DEGRADATION ON MILK PRODUCTIVITY AND INCOME IN DUAL-PURPOSE SYSTEMS IN PETÉN, GUATEMALA (BETANCOURT ET AL, 2007)

DEGRADATION LEVEL	SR (AU на ⁻¹)	MILK PRODUCTION (KG COW ⁻¹ YR ⁻¹)	REDUCTION IN KG OF MILK COW ⁻¹ YEAR ⁻¹ (%)	REDUCTION IN INCOMEO ¹ (US\$ HA ⁻¹ YEAR ⁻¹)
NONE	2.0	1582 ± 78		
SLIGHT	1.7	1474 ± 27	7 ± 3	184.30
MEDIUM	1.3	1395 ± 90	12 ± 8	378.14
Severe	1.0	1245 ± 118	21 ± 8	537.32
VERY SEVERE	0.5	1060 ± 300	34 ± 19	737.52

¹ Milk price @ farm gate US\$ 0.28/kg

PASTURE DEGRADATION IMPACTS

Environmental:

- Lower C-sequestration capacity
- > Higher GHG emisión intensity
- Greater soil erosion and compaction
- Biodiversity losses
- □ <u>Socioeconomic</u>:
 - Lower income affects food security
 - Less risk managment capacity
 - Seasonal separation of family members, because herders move with animals to distant grazing areas (in the case of pastoral systems.

Climate Change in LAC (BID, 2014)

In the last 50 years:

□ Temp^o increased by 1.0 - 1.5^oC. It is expected that in 2100 it will reach 2.6 -4.7^oC more.

 Slight variation in anual rainfall, because the rainy season is shortenin, and rains are every time more intense.

□ > Variability between and within years.

- 10-

10.1 - 15

15,1-20 20,1-25 > 25

0-500

500-1.000 1.000-2.000 2.000-3.000 > 3.000

TI MAYIN

and the

Temperatura media	Área Porcentaje (%)			
Rango *C	Actual	RCP 4,5	RCP 8,5	
< 10	10.77	8.16	7.34	
10 - 15	7.98	7.03	7.14	
15 - 20	16.41	14.23	13.14	
20 - 25	28.43	20.34	18.41	
>25	36.41	50.24	53.97	

Precipitación media	Área porcentaje (%)		
Rango mm	Actual	RCP 4,5	RCP 8,5
0 - 500	18.55	18.84	19.24
500 - 1.000	18.71	19.21	19.88
1.000 - 2.000	37.77	38.44	38.79
2.000 - 3.000	20.90	19.70	18.45
> 3.000	4.08	3.81	3.64

Área total (Km2): 23.590.066

Proyecto: Innovaciones para fomentar la adaptación al cambio climático del sistema productivo agricola y ganadero en América Latina y el Caribe

Información de Referencia

Projected Coordinate System: WGS_1984_World_Mercator Projection: Mercator Faitse_Easting: 0.00000000 Faitse_Northing: 0.00000000 Central_Meridian: 0.00000000 Standard_Parallel_1: 0.00000000 Linear Unit: Meter

Geographic Coordinate System: GCS_WGS_1984 Datum: D_WGS_1984 Prime Meridian: Greenwich Angular Unit: Degree

Fuente: Worldclim Version 1.4

9

CC IMPACTS ON CROP PRODUCTION (PRASAD ET AL., 2017)

- \blacktriangleright > EPT; < H₂O availability Soil m.o. interactions interfered Changes in soil nutrient dynamics Soil fertility Changes in plants : pest relationships **Consequently:**
- Productivity declines

CC IMPACTS ON THE DISTRIBUTIOIN OF PASTURE SPECIES IN LAC (Pezo *et al*, 2018)

TROPICAL PASTURES AND CC ADAPTATION

Increases in temp²:

- > Tropical grasses (C_4) growing at higher altitudes and latitudes.
- Need for tolerant/resistant species to pest (i.e., Urochloa brizantha cv. Marandú & Urochloa hybrids such as Mulato, Mulato 2 and Cayman resistant to "spittlebugs").

More intensive rains:

- Better soil cover in sloping areas using trailing species rastreras and/or combination of erect and trailing species.
- Species adapted to partially flooded lands (i.e. tanner, aleman, pará, Caimán, U. humidicola).

Shorter rainy season:

Species with shorter growing periods (i.e. sorghum replacing maize) or genotypes more tolerant to drought (i.e. Marandú & Caimán more tolerant to drought, as well as several forage legumes and woody perennials).

TROPICAL PASTURES & CC MITIGATION

- Increased C-sequestration: The roots of well managed pastures are usually good C-sinks (only forests are better).
- Reduction in CH₄ emissions:
 - Improved herbage quality results in decreasing GHG emissions by 15 – 30%.
 - Legumes with higher N content could help to improve the digestibility of poor quality forage diets.
 - Secondary metabolites (i.e. tannis, saponins) contained in some tropical legumes help to reduce CH₄ emissions.
- <u>Reduction in NO₂ emissions</u>: Many Urochloa species have mechanisms to reduce biological nitrification in the soil.

Excreta deposition (ha ⁻¹ year ⁻¹)				
Average SR	2.3 AU			
DM yield	3.77 ton			
Carbon	1.511 ton			
Nitrogen	60.4 kg			

Source: Abarca et al. 2018

INTENSIVE ROTATIONAL GRAZING

Objectives:

- To promote animals eating high quality forages (Mitigation)
- To keep enough residues after grazing and/or having a long enough resting period to promote the recovery of organic reserves needed for the persistence of valuable species (Adaptation).
- To maintain adequate soil cover (Adaptación)
- Physiological criteria to decide when animals enter to paddocks for tropical pastures are needed
- RATIONALITY = FLEXIBILITY

SMART USE OF AGRICULTURAL INPUTS (MITIGATION)

Fertilizers & herbicides: High needs of fossil energy and high GHG emissions in production and transport,

Precision agriculture (¿?): Fertilizer dosage & frequency for optimizing efficiency of utilization < N₂O emissions

□ Use of slow-releasing fertilizers (¿?)

Introduction of legumes into pasture systems :

> N-fixation using photosynthetic energy

Many legumes release N at a rate that matches absorption by companion grasses (less N₂O losses)

Email: Danilo.Pezo@catie.ac.cr

Solutions for environment and development Soluciones para el ambiente y desarrollo